Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.16.21258691

ABSTRACT

Background The response of the Swedish authorities to the COVID-19 pandemic was less restrictive than in most countries during the first year, with infection and death rates substantially higher than in neighbouring Nordic countries. Because access to PCR testing was limited during the first wave (February to June 2020) and regional data were reported with delay, adequate monitoring of community disease spread was hampered. The app-based COVID Symptom Study was launched in Sweden to disseminate real-time estimates of disease spread and to collect prospective data for research. The aim of this study was to describe the research project, develop models for estimation of COVID-19 prevalence and to evaluate it for prediction of hospital admissions for COVID-19. Methods We enrolled 143 531 study participants ([≥]18 years) throughout Sweden, who contributed 10.6 million daily symptom reports between April 29, 2020 and February 10, 2021. Data from 19 161 self-reported PCR tests were used to create a symptom-based algorithm to estimate daily prevalence of symptomatic COVID-19. The prediction model was validated using external datasets. We further utilized the model estimates to forecast subsequent new hospital admissions. Findings A prediction model for symptomatic COVID-19 based on 17 symptoms, age, and sex yielded an area under the ROC curve of 0.78 (95% CI 0.74-0.83) in an external validation dataset of 943 PCR-tested symptomatic individuals. App-based surveillance proved particularly useful for predicting hospital trends in times of insufficient testing capacity and registration delays. During the first wave, our prediction model estimates demonstrated a lower mean error (0.38 average new daily hospitalizations per 100 000 inhabitants per week (95% CI 0.32, 0.45)) for subsequent hospitalizations in the ten most populated counties, than a model based on confirmed case data (0.72 (0.64, 0.81)). The model further correctly identified on average three out of five counties (95% CI 2.3, 3.7) with the highest rates of hospitalizations the following week during the first wave and four out of five (3.0, 4.6) during the second wave. Interpretation The experience of the COVID Symptom Study highlights the important role citizens can play in real-time monitoring of infectious diseases, and how app-based data collection may be used for data-driven rapid responses to public health challenges.


Subject(s)
COVID-19 , Communicable Diseases
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.12.20129056

ABSTRACT

As no one symptom can predict disease severity or the need for dedicated medical support in COVID-19, we asked if documenting symptom time series over the first few days informs outcome. Unsupervised time series clustering over symptom presentation was performed on data collected from a training dataset of completed cases enlisted early from the COVID Symptom Study Smartphone application, yielding six distinct symptom presentations. Clustering was validated on an independent replication dataset between May 1- May 28th, 2020. Using the first 5 days of symptom logging, the ROC-AUC of need for respiratory support was 78.8%, substantially outperforming personal characteristics alone (ROC-AUC 69.5%). Such an approach could be used to monitor at-risk patients and predict medical resource requirements days before they are required.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.25.20079251

ABSTRACT

Objectives: We aimed to identify key demographic risk factors for hospital attendance with COVID-19 infection. Design: Community survey Setting: The COVID Symptom Tracker mobile application co-developed by physicians and scientists at Kings College London, Massachusetts General Hospital, Boston and Zoe Global Limited was launched in the UK and US on 24th and 29th March 2020 respectively. It captured self-reported information related to COVID-19 symptoms and testing. Participants: 2,618,948 users of the COVID Symptom Tracker App. UK (95.7%) and US (4.3%) population. Data cut-off for this analysis was 21st April 2020. Main outcome measures: Visit to hospital and for those who attended hospital, the need for respiratory support in three subgroups (i) self-reported COVID-19 infection with classical symptoms (SR-COVID-19), (ii) self-reported positive COVID-19 test results (T-COVID-19), and (iii) imputed/predicted COVID-19 infection based on symptomatology (I-COVID-19). Multivariate logistic regressions for each outcome and each subgroup were adjusted for age and gender, with sensitivity analyses adjusted for comorbidities. Classical symptoms were defined as high fever and persistent cough for several days. Results: Older age and all comorbidities tested were found to be associated with increased odds of requiring hospital care for COVID-19. Obesity (BMI >30) predicted hospital care in all models, with odds ratios (OR) varying from 1.20 [1.11; 1.31] to 1.40 [1.23; 1.60] across population groups. Pre-existing lung disease and diabetes were consistently found to be associated with hospital visit with a maximum OR of 1.79 [1.64,1.95] and 1.72 [1.27; 2.31]) respectively. Findings were similar when assessing the need for respiratory support, for which age and male gender played an additional role. Conclusions: Being older, obese, diabetic or suffering from pre-existing lung, heart or renal disease placed participants at increased risk of visiting hospital with COVID-19. It is of utmost importance for governments and the scientific and medical communities to work together to find evidence-based means of protecting those deemed most vulnerable from COVID-19. Trial registration: The App Ethics have been approved by KCL ethics Committee REMAS ID 18210, review reference LRS-19/20-18210


Subject(s)
Lung Diseases , Fever , Diabetes Mellitus , Obesity , Kidney Diseases , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL